

FERAL HOG EXPANSION

- 1988-462 U.S. counties had feral hogs
- 2004-1,042 U.S. counties had feral hogs
- Increase of 125% !!!
- 39 states and 4 Canadian Provinces as of 2006

	Eurasian Wild Hog	Feral Hog	Domestic Hog
Sexual maturity	$7-9$ months (female) $10-15$ months (male)	6-8 months (female) (male) (months	$5-7$ months (female) $8-10$ months (male)
Gestation period	$120-140$ days	$115-130$ days	$110-120$ days
Weaning age	$5-6$ months	$4-5$ months	$3-4$ months
Litter size	$4-6$	$5-8$	$10-12$
Litters per year	1	1.5	2

Reproductive Biology of an Introduced Wild Pig Population over Four Decades

John J. Mayer and I. Lehr Brisbin, Jr.
Savannah River National Laboratory Aiken, South Carolina (JJM)
and
Savannah River Ecology Laboratory Aiken, South Carolina (ILB)

Wild Pig Reproductive Biology Results - Female Parameters

A total of 2,483 sows examined:

- 712 (29\%) were pregnant
- 348 (14\%) were lactating

17-year Hawaiian Study (Hess et al. 2006):

- Sample size $=327$
- Pregnant - 77 (24%)
- 52 (7\%) of the pregnant sows were also nursing a litter of piglets
- Lactating - 34 (10\%)
- Both - 2 (1\%)

(i)SRNL

Wild Pig Reproductive Biology

Results - Female Parameters
Litter size variation due to sow's age class:

- Litter size did not significantly increase with age class of the sow for the following samples -
- Fetal Litter Size ($\mathrm{N}=712$)
- Neonatal Litter Size ($\mathrm{N}=45$)
- Number of Lactating Teats ($\mathrm{N}=348$)

()SRNL

(i)SRNL

Wild Pig Reproductive Biology Results - Female Parameters

Female age class participation in reproduction: Percent composition increased with age for

- Pregnant sows

Pregnan
$(\mathrm{N}=712)$

- Sows with neonatal litters in farrowing nests ($\mathrm{N}=45$)
- Lactating sows ($\mathrm{N}=348$)

Wild Pig Reproductive Biology
 Results - Female Parameters

Litter size variation due to sow's total body mass (TBM):

- Litter size did not significantly increase with the sow's TBM for fetal litter size ($\mathrm{N}=712$ sows)
- Litter size did significantly increase ($p<0.01$) with the sow's TBM for -
- Neonatal litter size ($\mathrm{N}=45$ sows)
- Number of lactating teats ($\mathrm{N}=348$ sows)

SRNL

Wild Pig Reproductive Biology

Results - Female Parameters

Age class specific production of offspring:

- Total numbers of offspring produced did significantly increase with the sow's age for -
- Fetal sample ($\mathrm{N}=4,383$)
- Neonatal sample ($\mathrm{N}=269$)
- Lactation sample ($\mathrm{N}=1,993$)

(4)SRNL

Wild Pig Reproductive Biology

Results - Male Parameters

- Total of $\mathrm{N}=721$ boars examined
- Most boars don't significantly participate in breeding until yearling age class
- Based on presence of open wounds and scars indicative of male-male fighting, over 70 percent of active breeding boars are adults
- One captive SRS boar (~4-5 months old) bred five much larger adult sows in same enclosure
(ii)SRNL

Wild Pig Reproductive Biology

Results - Breeding Season

Breeding season:

- Comparisons with -
- Mean percent of pregnant sows per month
- Mean percent of lactating sows per month
- Mean thickness of the shoulder shields per month

Wild Pig Reproductive Biology

Results - Litter Size

Litter sex ratio:

- Based on a sample of 1,110 fetuses, 556 were males and 554 were females (NS)
- Based on a sample of 446 neonates, 202 were males and 243 were females ($p<0.05$)

Sex	M	M:F	F
Fetal	3%	95%	2%
Neonatal	7%	84%	9%

(i)SRNL

Wild Pig Reproductive Biology Results - Breeding Season
 Breeding season ($\mathrm{N}=323$):
 - Occurs year-round
 - Peak of conception in Sep (Aug-Oct)
 - Peak of farrowing in Jan (Dec-Feb)
 - Secondary peaks
 - Conception - Jan
 - Farrowing - Apr-May

(-i)SRNL

Genetic relatedness of feral pigs in the United
States: national and regional perspectives with implications for management

Blake McCann ${ }^{I}$, Brandon Schmit ${ }^{2}$, Seth Swafford ${ }^{2}$,
Richard Sweitzer ${ }^{3}$, and Rebecca Simmons ${ }^{\prime}$
${ }^{\prime}$ Department of Biology, Univessity of North Dakota, Grand Forks, ND, USA
${ }^{2}$ United States Department of Agriculture, Wildlife Services, Fort Collins, CO, USA ${ }^{\prime}$ Univensity of Califorma, Berkeley, Bass Lake, CA. USA

Key Findings

U.S. feral populations are of European and Asian origins

Written histories of translocation (e.g. Smokies - Califormia) corroborated
Unique genetic profiles (ND, WV, CA, Asian lineage, Smokies) present

- useful for identifying sources of newly established populations

A combination of Mitochondrial and Nuclear markers is necessary

Tremendous opportunity for improved management of feral swine!

- identification of domestic and wild origins
- tracking and stopping translocations
- tracking potential for spread of disease

Breeding Potential versus Population Control

- Population reduced by 70% will rebound within 2.5 years
- Population reduced by 95% will rebound in less than 5 years!!!

Methods

- 36 sites...each randomly assigned to 1 of 3 baits
- Mash (Soured Corn)
- Mix

Thole

Feral swine in USA

- Spread from 9 states 30 years ago to 44 states today.
- Population estimated to exceed 4 million.
- Economic impact is predicted by Pimentel to near \$1 billion annually.
- Mixed legal status in US states- invasive, game, unclassified.

Why do we need a new pig toxin?

Desirable attributes of a new toxin

$>$ Poisoning is $11 x$ cheaper than shooting and $80 x$
Safe for humans $\square \quad$ Antidote \boxtimes cheaper than trapping (Coblentz and Baber 1987 JAE).
> Currently 3 toxins legally used for feral pig control: - 1080: humane?, death 4-20hrs, non-selective at pig dose, no antidote, restricted access.

- Phosphorous: inhumane, death 2-4 days, non-selective.
- Warfarin: inhumane, death 1-2 wks, selective, antidote.
> National Threat Abatement Plan requires innovative and humane techniques to control damage by pigs.
$\frac{2}{2}$
Invasive Animals Cooperative Research Centre
"Together, create and apply solutions"

Bait deliverable \boxtimes
Target specific \boldsymbol{x} Humane \square Low/no residues \square

Invasive Animals Cooperative Research Centre
"Together, create and apply solutions"

Sodium nitrite is the main meat and fish preservative used worldwide manufactured met keep rerfigerated at $0.4{ }^{\circ} \mathrm{C}$ ReaÔ to INGREDIENTS: MEAT INCLUDNG PORK (80%), WATER, STARCH (POTATOPEATAPIOCA)

Invasive Animals Cooperative Research Centre "Together, create and apply solutions"

Bait delivery to US pigs will require a

 species-specific hopper- Campbell \& colleagues have clearly shown that AUS pig baits are not pig specific in USA.
- Bait-delivery to pigs will require the development of a species-specific hopper.
- Numerous prototypes are current under development and being field trialled.

Invasive Animals Cooperative Research Centre "Together, create and apply solutions"

The development of nitrite in the USA

- IACRC is currently working cooperatively with NWRC Wildlife Services.
- Nitrite toxicosis is quick and humane, reversible and leaves low/no residues in carcases.
- Such properties may mean nitrite is suitable for other species, such as rodents.
- Species-tailored delivery techniques will be required for each species.
- Non-toxic feral swine hopper trials will shortly be underway in Texas, Florida, Mississippi, Oklahoma, Michigan and Missouri.

THE DEVELOPMENT OF THE ‘ULTIMATE' FERAL HOG BAIT HOPPER Are we heading in the right direction?

Spain- Piglet feeder

- Developed by IREC to deliver vaccine baits to European boar.
- Pros- excludes large mammals; transportable; durable.
- Cons- heavy; bulky; price?; only targets piglets; little target-specificity; weatherproof?

What to do about black bears?

- Black bears and feral swine co-exist in some states - Florida, California - but certainly not all.
- Use biology to separate species- bait in winter.
- Trap and shoot pigs when bears active.

Boar Operated System ${ }^{\text {TM }}$

- Developed in the UK for delivery of antifertility baits.
- Texas trials excluded all species, except

Feral Hog Control

 scraps from racoons (bait design dependent).- Tetracycline trials marked 97% of adults and 91% of juveniles with no sex bias (plus 15% of racoons). No other species accessed bait.

2008 Medina County

Dryland Yellow Corn
July 21, 2008

Barbed Wire Fence

- This requires multiple strands of barbed wire with at least 7 strands of high tensile 4 pt barbed wire
- 14 g or $15^{1 / 2 g}$ high tensile barbed wire should be used since barbed wire will not stretch or sag under pressure. $12^{1 / 2}$ g standard barbed wire can not withstand pressure and will stretch and sag resulting in feral hogs slipping between or under the strand of barbed wire
- Placed first strand at ground level and 5 " on center for next 30"
- Post spacings should not exceed 10 to 12 feet
- This fence is costly to install but would control feral hogs from entering crop land

Tyler Campbell

Fixed Knot Fence

- This is only fence that can deter feral hogs from entering crop area
- Fixed knot utilizes solid vertical stay wires, which increase the vertical strength of the fence and allow for increased post spacing. Standard post spacing should be no closer than 20^{\prime} on centers and can be up to 30 ' on centers with use of all pipe or wood for posts.
- The knot is a separate piece of wire tightly wrapped around the line wire and stay wire
- Fixed knot is very resistant to animal damage.
- For added security should add a strand of 4 pt high tensile barbed wire at ground level to prevent any rooting by aggressive feral hogs

Tyler Campbell

735-6 FIXED KNOT FENCE PLUS TOP \& BOTTOM STRAND OF PREDATOR WIRE

FERAL SWINE BEHAVIOR RELATIVE TO AERIAL GUNNING IN SOUTHERN TEXAS
Campbell et al
-Home range size and core area did not differ before and after aerial hunting
-Movement rate higher during hunting!

Pigs Under Pressure: Evaluation of Fences for Containing Motivated Feral Swine During Depopulation

Michael Lavelle
Kurt VerCauteren
Justin Fischer Gregory Phillips Trevor Hefley Scott Hygnstrom Seth Swafford David Long Tyler Campbell

Objective: Evaluate means to quickly and effectively contain feral pigs during disease outbreak

- evaluated 5 candidate fences
- selected 34 inch hog panel for extensive testing
- pigs confined in $164 \times 246 \mathrm{ft}$ pens for 4-14 days
- subjected to progressive levels of motivation:

1. minimal disturbance
2. pursuit by humans with paintball guns
3. pursuit by gunners in helicopter

Results

- 97\% successful (minimal disturbance)
- 83\% successful (paintball gunners)
- 100\% successful (helicopter gunners)
- 1 of 6 pigs escaped during 14 day trials
-Hog panel exclosures relatively inexpensive: \$5.26 per yard (excluding labor).

